CHAPTER 3 BASIC PROGRAMMING
AND INSTRUCTION SET

Accumulating Result Register

~ The reader will note that the AND instruction introduced the concept of an accumulat-
ing Result Beglster. In the execution of this instruction, the ICU logically performed an
AND function on the data on its bidirectiona! data line with the data in its internal Result
Register. The result of this operation became the new content of the Result Register. The
point to b.e made here is that the Result Register always receives the result of any of the
ICU’s logical instructions. The Result Register therefore accumulates the logical result of
each ICU logical instruction. This is analogous to an adding machine which always displays
the subtotal after each operation.

Complement Instruction

It is sometimes desirable to activate an output when one input is in the logic O state and
?tnother inputis in the logic 1 state. This situation occurs in relay controlled systems where
normally c]qsed" relays are used, and oceurs in solid state logic systems where inverters
are present. Figure 3.1 shows an example of this situation.
. Th_e IC!J instruction set is prepared for this event. Several logical *‘complement’’
Instructions invert the logic level of the data on the ICU’s bidirectional data line before
operation on this data.

A B A :
x LOAD
LOAD

Lina Return

Figure 3.1 Examples of Complamented Signels

The LDC Instruction

An example of one of these instructions is the load complement instruction, ab-
brevigled (LDC). The operation of this instruction is as follows. The ICU system memory
_supphes the ICU with the LDC instruction and the input selectors with the address of the
Input to be used in the operation. The input selector then demultiplexes the data of the

. selected input to the ICU’s bidirectional data line. The ICU complements this data and stores
the result in its one bit Result Register. The Result Register will receive a logic 1 if the
selected input was in the logic O state. Figure 3.2 shows an ICU progra’fn which solves the
problem shown in Figure 3.1, using the LDC command. The reader should be convinced of
the operation of this program before reading further.

15

Line LOAD powyrn

Loads the loglcal complemeant of the A lnpr:Jt
fnto the Aesult Reglster.

Legleally AND's the 8 input with the content

of the Result Register (which contalng the
complamant of the A Input). The result of this
oparation becomes the new content of the Aesult
Registar,

Transfers the Result Aeglster deta to the output
fatch designated LOAD,

Note that the STO instruction whl only transfer a logic 1 signal to the cutput latch If the A signal is logie 0
and the B signal i3 logic 1.

Figure 3.2 Using the LDC Command

The ANDC Instruction

Another example of a logical complement instruction is the *‘and complement’”
instruction abbreviated (ANDC). The operation of the ANDC instruction is as follows. The
ICU system memory supplies the ICU with the ANDC instruction and the input selectors
with the address of a selected input. The input selector then demultiplexes this data onto the
ICU’s one bit bidirectional data line. The ICU complements this data and logically AND's
this data with the data in the Result Register. The result of this operation becomes the new
content of the Result Register. The Result Register will receive a logic 1 if the input selected
was at logic zero and the Result Register previously contained a logic 1.

With the addition of this instruction the ICU is able to attack some more complicated
“‘chain’"’ calculations. Figure 3.3 shows one such example. Figure 3.4 shows an ICU
program which solves the problem depicted in Figure 3.3.

In reviewing the operation of these instructions, the reader should be convinced that
the load device will only receive a logic 1 signalif A=1,B=0,C=1,andD =0,

16

A 8 < o
LOA
Line
Figure 3.3 Example of a Chain Calculation
Statement Operator Operand Comments

#1 LD A Result Register A
#2 ANDC B Result Register <A+ B
#3 AND c Result Register “A+*B+C
#4 ANDC a] Result Register <A =B+ C-D
#5 STO LOAD Result Register = A+« B-C+ D> LOAD

Figure 3.4 Program to Solve the Chain Calcifation of Figure 3.3

OR and ORC

In many cases, it is also desirable to activate an output when either input is in the logic 1
state. In this event, the ““or"’ instruction, (OR), should be used. The operation of the OR
instruction is as follows. The ICU system memery supplies the OR instruction to the ICU
and the address of the input to be used in the operation to the input selectors. The input
selector then demultiplexes the addressed data onto the ICU’s bidirectional data line. The
ICU then logically OR s this data with the content of the ICU’s Resuit Register and returns
the result of the operation to the Result Register. '

The ICU also has an ‘‘or complement'” instruction, abbreviated ORC, in the event
complement logic is needed. The operation of this instruction is exactly like the OR
instruction except the incoming data is complemented before the OR cperation is per-
formed. Figure 3.5 shows some examples where the OR and ORC instructions may be used.

In the example of using the OR instruction, the load device will receive a logic 1 signal
if the A or B or both inputs are in the logic 1 state. In the example of the ORC instruction, the
load device receives a logic 1 signal if the A input is in the logic 1 state or the B input s in the
logic O state,

Use of Temporary Locations

Many of the logic structures found in the controls industry are branches of several
series relays, in parallel with another branch of series relays. Figure 3.6 shows an example
of this structure.

porf—
r— LOAD

LINE ~ C D

AETURN

SOLIDSTATE EQUIVALENT

RELAY LADDER LDGIC

ﬁ N
1 1T
LOAD % LGAD
L “ Al
Line B Return LINE B RETURN
A A
LOAD LOAD
s > m—
OR OR
b A RR+A # LD A RR+=A _
#2 OR B RR+A+B #2 ORC B F{FI‘_'A-FB
#3 STO LOAD A +B=RR*LOAD #3 sTO LOAD A+B=RR—LOAD
Use of the OR instruction Use of the ORC instruction

Figurs 3.5 Use of the OR a2nd ORC |nstru=ﬁuns

17

Figure 3.6 Series-Parallel Combinations

When dealing with this type of problem, it is net always possible to directly ‘‘chain’’ a
series of LD, LDC, AND, ANDC, OR, and ORC instructions together to comrectly evaluate
the logic function required. In some cases, it may be necessary to temporarily store the
intermediate results before processing the remainder of the problem. In these cases, the
programmer must evaluate the series branches using LD, AND, and ANDC instructions as
necessary to evaluate the expression and then store the result in a temporary location. The
second series branch must then be evaluated and ORed with the data saved in the temporary
location. The result of this operation should then be used to activate or deactivate the load
device. Figure 3.7 shows a common error in programming this type of problem and Figure
3.8 describes and the correct approach to the problem. Figure 3.8 shows the comrect method
for solving this problem by using a temporary storage location. :

—{ LOAD

LINE c [+] RETURN
#1 LD A RR + A
#2 AND B RR+A-B -
#3 DR c RR+AB+C FRRACE
wd AND D RR+{A+-B+C) D

#5 STO LOAD RR —* LOAD

**Note that the final expression incorrectly resulted in the D term being distributed
across all ather terms, For example, if &, B and C are logic 1 and the D input is logic 0,
the load device would receive s fogic O; this is incorrect because the load device should
be activated when the A and B inputs are logic 1.

Figure 3.7 Example of Incorrect Programming

18

LOAD

Raturn

#1 LD A RR + A

#2 AND B RR+A-B

#3 STQ TEMP RR = A+ B+ TEMP

#4 LD c RR+C

#5 AND D RA<C+D

OR TEMP RR<C-D+I{TEMP=A-B/=A-B+C*D
#7 STO LOAD RR=A-B+C D+ LOAD

In this program, the logical result of ANDing A end B is stored temporarily, then the logical
AND of C and D is ORed with the data previously stored in the temporary location. The
carrect logical signal is then transferred to the load device. This example demonstrates

the need for temporary storage locations before proceeding.

Figure 3.8 Correct Method of Salving the Problem

The XNOR Instruction

The **exclusive nor’’ instruction, abbreviated (XNOR), is the final logical instruction
in the ICU’s repertoire of logical instructions. The XNOR instruction can be thought of as a
**match"’ instruction. That is, whenever the input data is identical to the data in the Result
Register, the new content of the Result Register will be a logic 1. Figure 3.9 shows the truth
table for the XNOR function and Figure 3.10 an example using the XNOR function. Note
the reduction in code that may result from the use of this instruction.

Oid New
Result Result
Input Ragister Register
Dats Data Data
1] (1] 1
0 1 0
1 o 1]
1 1 1

Figure 3.8 XNOR Truth Table

19

A
— A
EQUALS g LoAD
LOAD j]

RETURN
A B
LINE
#1 LD A
#2 AND B
#3 STO TEMP
#4 Loc A EQUALS LD A
ANDC B XNOR B
OR TEMP sTO LOAD
#! §TO LOAD

Figura 3,10 Example of use of XNOR Instruction

The STOC Instruction

When transferring a signal to activate a load device, it is very useful to be able to store
the logical complement of an expression. The ICU therefore has a *“store complement’”
instruction, abbreviated (STOC). The STOC instruction is exactly like the store (STO)
instruction, except the logical complement of the Result Register is transferred to the output
latch. It should be pointed out that the Result Register retains its original value (i.e. the
STOC does not change the Result Register value, it merely transfers the complement of the
Result Register to the bidirectional data line for routing to the output latches). This
instruction is quite useful when dealing with negative logic or so called *‘low active’’
devices. Figure 3.11 shows an example usage of the STOC instruction. Figure 3.12 shows a
problem in both the relay ladder and logic formats. Figure 3.13 shows the problem reduced
to code.

[
B
QUTPUT
c
[»]
#1 LD A RR + A
#2 AND B RAR<A+B
#3 STO TEMP £« BFTEMP
4 LD C RAR+C
AND P RR+C=-D
#8 OR TEMP BR+*C-D+A-B
#7 STOC QUTPUT A+B+C+D—QUTPUT

Figure 3.11 Example of tha STOC Instruction

20

—————f

2] E F

l—'_\H(_—”_— LOAD
I'ﬁ >H\ RETURN

LINE
Figure 3.12 Complex Problem

#1 LD A RR+A
#2 AND B RR<A‘B
#3 AND [RR+<A-B-C
STO TEMP A-+B*C—>TEMP
LD D RR+D
ANDC E RR<D-E
#7 AND F RR<D-E-F
#8 OR TEMP RR<A-B-C+D-E-F
#9 AND G RR<(A*B*C+D-E-F}:G
#10 ANDC H RR+<(A+B*C+D-E-F)*G*H
#11 STO TEMP (A-B-C+D-E:F)+G+H<TEMP
#12 LD 1 RR «|
#13 ANDC J RR<|-7T
#14 OR TEMP RR“(A*B*C+D+E*F)-G-RA+1-T
#15 STO LOAD (A*B-C+D-E-F)-G-H+I1+J>LOAD

Figure 3.13 Complex Example Problem Code

21

