
An LDmicro Tutorial

Default · Nice · Light · Big · Grey/Yellow Ugly · 
Plain 

 
 

Home

Prox / RFID

Verichips

Ladder Logic

[tutorial] †

[interfacing] †

Photographs

Miscellany

Resumé / 
Consulting

Contact Me

 

An LDmicro Tutorial
In this tutorial, I will show you how to write a very simple program. I am assuming that you have 
written ladder logic before, and that you have some basic familiarity with microcontrollers, but 
that you have never used LDmicro. If you don't know very much about ladder logic or PLCs, then 
the plcs.net tutorial might be helpful to you.

Our device will have one pushbutton, and one LED. At startup, the LED will be off. When you 
press the pushbutton once, the LED will turn steady on. The second time you press the 
pushbutton, the LED will start blinking. The third time that you press the button, the LED will turn 
off again. On subsequent presses, the cycle will repeat.

Microcontroller Selection and Schematic

We will be using a PIC16F876, which is easily available from Digikey or other online distributors. 
It comes in a number of different packages; I chose a DIP.

This is our schematic:

http://cq.cx/ladder-tutorial.pl（第 1／11 页）2007-4-10 21:05:30

http://cq.cx/skin.pl?t=default
http://cq.cx/skin.pl?t=nice
http://cq.cx/skin.pl?t=light
http://cq.cx/skin.pl?t=big
http://cq.cx/skin.pl?t=greyyellow
http://cq.cx/skin.pl?t=plain
http://cq.cx/index.pl
http://cq.cx/prox.pl
http://cq.cx/verichip.pl
http://cq.cx/ladder.pl
http://cq.cx/interface.pl
http://cq.cx/photo.pl
http://cq.cx/misc.pl
http://cq.cx/resume.pl
http://cq.cx/resume.pl
http://cq.cx/contact.pl
http://www.plcs.net/contents.shtml


An LDmicro Tutorial

The microcontroller (IC1) is part number PIC16F876-20I/SP-ND at Digikey. Almost any three-
terminal resonator (U1) will do; you might try a 535-9356-ND or an X909-ND.

The only thing that might confuse you is that the pushbutton goes to Vdd, and there is a pull-
down. You might be more used to seeing a pushbutton to ground with a pull-up. For TTL, this 
mattered. For modern CMOS it does not, and I find this ‘active HIGH’ arrangement less confusing 
than the traditional ‘active LOW’ circuit.

Also, I chose to use a ceramic resonator with internal capacitors, U1, instead of a crystal and two 
~20 pF caps. A crystal would work just as well and it would be more accurate, but it would be a 
little bit more expensive, and you would need more parts.

You could build this circuit in many different ways. I built it on a solderless breadboard, and it 
ended up looking like this:

http://cq.cx/ladder-tutorial.pl（第 2／11 页）2007-4-10 21:05:30

http://www.digikey.com/


An LDmicro Tutorial

(The resistor values pictured are not quite the same as the schematic; none of them are critical.)

Ladder Diagram for the Program

First, we are going to need an oscillator to generate the ‘blinking’ signal for the LED. There is a 
standard way to do this in ladder logic:

         ||      Rosc            Tosc_on         Tosc_off           Rosc       ||
       1 ||-------] [--------[TON 250.0 ms]---[TOF 250.0 ms]---------(/)-------||

This will flash at 1/((250+250) ms), or 2 Hz, or twice per second. The duty cycle will be 50%—
250 ms on, then 250 ms off. This circuit can make any kind of oscillator, with whatever period or 
duty cycle you require, so it is a good one to remember.

Also notice that we have chosen to use an internal relay (‘Rfoo’) instead of one attached to an I/O 
pin (‘Yfoo’ or ‘Xfoo’). This makes sense, because there is no particular reason to bring that signal 
out to a pin. LDmicro will automatically assign memory for the internal relay.

Our program will have three states: off, steady on, and blinking. The program should change its 
state on each rising edge of the signal from the pushbutton. This is a good application for a 
circular counter. We will say that ‘state 0’ is ‘off,’ ‘state 1’ is ‘steady on,’ and ‘state 2’ is ‘blinking.’ 

http://cq.cx/ladder-tutorial.pl（第 3／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

The counter counts 0, 1, 2, 0, 1, 2, ..., so if we just let the rung-in condition of the counter be the 
pushbutton input, then everything will work like we want:

         ||     Xbutton                                            Cstate      ||
       2 ||-------] [---------------------------------------------{CTC 0:2}----||

Now the only thing left is to use the program state to set the state of the LED. We can do it like 
this:

         ||   [Cstate ==]                                           Yled       ||
       3 ||---[ 1       ]-------------------+------------------------( )-------||
         ||                                 |                                  ||
         ||   [Cstate ==]         Rosc      |                                  ||
         ||---[ 2       ]----------] [------+                                  ||

It should be easy to convince yourself that this does what we want. If the program is in state 1, 
then the ‘Cstate == 1’ instruction energizes ‘Yled’, as desired. In state 2, the ‘Cstate == 2’ 
instruction energizes ‘Yled’, but only when ‘Rosc’ is also true. Since ‘Rosc’ is oscillating, that 
means that the LED will blink, as desired. Finally, in state 0, neither of the equals instructions will 
be true, so there is no way that ‘Yled’ could ever turn on.

Entering the Ladder Diagram

Now that we have our circuit, we can draw it in LDmicro. When you start LDmicro, you will see a 
single empty rung:

We want to enter the first rung from the listing above. We will start with the coil, so choose 
Instruction -> Insert Coil. This will create a coil named ‘Ynew.’ This is what we want, except that 
the name is wrong, and it should be negated. Double-click the coil; this will bring up a dialog 
where we can fill that in:

http://cq.cx/ladder-tutorial.pl（第 4／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

Now we can insert the rest of that rung in the same way. Click on the left edge of the coil, so that 
the cursor is vertical, and to the left of the coil. Now choose Instruction -> Insert TON (Delayed 
Turn On). Once again double-click the timer to rename it and set the period. Add the TOF timer 
and the contacts in the same way.

Now we want to enter the second rung, so choose Edit -> Insert Rung After. Then click on the 
second rung to move the cursor there:

The second rung is easy: just fill in the two instructions in the right order, by placing the cursor 
where you want to insert and then choosing Instruction -> Insert .... Remember to assign a name 
(‘Xbutton’) to the contacts, and to set the name and upper limit of the counter. Then choose Edit -
> Insert Rung After again. Your program should look like this:

http://cq.cx/ladder-tutorial.pl（第 5／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

The third rung will be a bit trickier, because it has parallel branches. That means that you have to 
think about the order in which you insert the instructions. First, insert the coil, and rename it:

Now insert the first equals instruction to the left of the coil, as usual, and fill in the correct 
variable name and value. After you do that, add the parallel branch. You can do this by clicking on 
the bottom edge of the equals instruction; the cursor will be horizontal and below that equals 
instruction:

http://cq.cx/ladder-tutorial.pl（第 6／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

Now choose Instruction -> Insert EQU (Compare for Equals). Since your cursor is below the first 
equals instruction, the new equals instruction will be inserted below that instruction, in parallel 
with it. Rename it as usual. To finish the rung, you must insert the ‘Rosc’ contacts to the right of 
the second equals instruction. To do this, click on the right edge of the second equals instruction:

At this point you can choose Instruction -> Insert Coil; the coil will be inserted in series with the 
second equals instruction, as you require. Rename it and you are done:

http://cq.cx/ladder-tutorial.pl（第 7／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

Simulating the Program

Now we are ready to simulate our circuit. Choose Simulate -> Simulation Mode. The display will 
change; the ladder diagram will appear mostly greyed, but you won't see anything changing with 
time. That is because the PLC is not yet cycling. To start it cycling, choose Simulate -> Start Real-
Time Simulation. Now you will see things happening: the oscillator is obviously running, but the 
LED (‘Yled’) is still off, which is what we want, because no one has pressed the button yet. To 
simulate pressing the button, double-click the text ‘Xbutton’ in the list at the bottom of the 
screen. You have now simulated bringing the pushbutton input high; this is what would happen if 
someone depressed (but did not yet release) the pushbutton. 

http://cq.cx/ladder-tutorial.pl（第 8／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

You can see that the program is working: the ‘Cstate’ counter is now equal to 1, which 
corresponds to the ‘steady on’ state, which is what we want. The LED output is high; you can see 
that its value is 1 in the list, and the ‘Yled’ coil appears red on the diagram. Double-click the 
‘Xbutton’ text in the list to simulate releasing the button, then double-click it again to simulate 
pressing it again; the ‘Yled’ coil will start blinking, as designed. If you simulate a third button 
press then the output will go steady low.

Compiling to an IHEX File

So now we are fairly sure that the program works. At this point we are ready to generate actual 
code, and try it in the micro. First, exit simulation mode by choosing Simulate -> Simulation 
Mode, or by pressing Escape.

http://cq.cx/ladder-tutorial.pl（第 9／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

Next we must choose a microcontroller. We decided earlier that we would be using a PIC16F876, 
so choose Settings -> Microcontroller -> Microchip PIC16F876 28-PDIP or 28-SOIC. We also have 
to tell LDmicro what kind of crystal we will be using, and what the cycle time will be. Choose 
Settings -> MCU Parameters, and fill in our clock speed of 20 MHz. Leave the cycle time at 10 ms; 
that will usually be a good value.

Now we can assign pins to our inputs and outputs. Double-click ‘Xbutton’ in the list at the bottom 
of the screen, and choose pin 14 of the PIC, which corresponds to MCU port RC3. (There is usually 
no reason for you to care which port you are using; just look at the pin number.)

Click ‘OK,’ and then repeat the process for ‘Yled’, which you can see from the schematic should go 

http://cq.cx/ladder-tutorial.pl（第 10／11 页）2007-4-10 21:05:30



An LDmicro Tutorial

to pin 15. The other elements in the list are internal variables and bits in memory, so there is no 
need to assign pins to them. LDmicro will allocate memory for them when you compile.

So now you are ready to compile. Choose Compile -> Compile, and specify where you want to put 
the IHEX file. Then use whatever PIC programming equipment you have available to load that into 
your device, and you are ready to try it out.

This completes my tutorial. It is possible to write much more complex programs than that, of 
course. A program this simple uses only a very small fraction of your processor's memory, so 
there is room for many more rungs of logic. LDmicro also offers specialised instructions, for things 
like arithmetic, analog (A/D) inputs, PWM, and even text output to a character-based LCD. 
Consult the manual for details.

I don't see why you would need to, but you can download the tutorial program premade.

December 2005, Cambridge MA

 

http://cq.cx/ladder-tutorial.pl（第 11／11 页）2007-4-10 21:05:30

http://cq.cx/dl/ldtut.ld

	cq.cx
	An LDmicro Tutorial


