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AVR Architecture 



AVR Architecture 
  Clocks and Power 
  Beyond scope of this 

course 



AVR Architecture 
  CPU 

  Details coming 



AVR Architecture 
  Harvard architecture 
  Flash – program memory 

  32K 

  SRAM – data memory 
  2K 

  EEPROM 
  For long-term data 
  On I/O data bus 



Memory 
  Flash (32K)  (15-bit addresses) 

  Program memory – read only 
  Non-volatile 
  Allocate data to Flash using PROGMEM keyword 

  see documentation 

  SRAM (2K) 
  Temporary values, stack, etc. 
  Volatile 
  Limited space! 

  EEPROM (1K) 
  Long-term data 
  see documentation on EEPROM library 



AVR CPU 
  Instruction Fetch 

and Decode 



AVR CPU 
  ALU Instructions 



AVR CPU 
  I/O and special 

functions 



AVR Register File 
  32 8-bit GP registers 
  Part of SRAM memory space 



Special Addressing Registers 
  X, Y and Z registers 

  16-bit registers made using registers 26 – 31 

  Support indirect addressing 



AVR Memory 
  Program memory – Flash 

  Data memory - SRAM 



Addressing Modes 
  Direct register 

addressing 



Addressing Modes 
  Direct I/O addressing 



Addressing Modes 
  Direct data memory addressing 



Addressing Modes 
  Direct data memory with displacement addressing 



Addressing Modes 
  Indirect data memory addressing 



Addressing Modes 
  Indirect data memory addressing with pre-decrement 



Addressing Modes 
  Indirect data memory addressing with post-increment 



Addressing Modes 
  Program memory addressing (constant data) 



SRAM Read/Write Timing 



Stack Pointer Register 
  Special register in I/O space  [3E, 3D] 

  Enough bits to address data space 
  Initialized to RAMEND (address of highest memory address) 

  Instructions that use the stack pointer 



Program Status Register (PSR) 

  \ 
  Status bits set by instructions/Checked by Branch/Skip 

instructions 
  I – Global interrupt enable 
  T – Flag bit 
  H – Half carry (BCD arithmetic) 
  S – Sign 
  V – Overflow 
  N – Negative 
  Z – Zero 
  C – Carry  



Simple 2-Stage Pipeline 
  Branch/Skip?? 



Single-Cycle ALU Instructions 
  Most instructions execute in one cycle 
  Makes program timing calculations (relatively) easy 

  No cache misses 
  1 clock/instruction 



Addressing Modes 
  JMP, CALL – Direct Program Memory Addressing 



Addressing Modes 
  IJMP, ICALL – Indirect program memory addressing 



Addressing Modes 
  RJMP, RCALL – Relative program memory addressing 



Arithmetic Instructions 



Logical Instructions 



Jump and Call Instructions 



Skip and Branch Instructions 



Skip and Branch (cont) 



Move, Load 



Store 



Load/Store Program Memory 



Move, I/O, Push/Pop 



Shift and Bit Instructions 



Bit Instructions (cont) 



AVR Architecture 
  Three timers 
  Very flexible 

  Choose clock rate 
  Choose “roll-over” value 
  Generate interrupts 
  Generate PWM signals 

  (represent 8-bit value with 
using a clock signal) 

  More in next lecture… 



Arduino Timing Functions 
  delay(ms) 

  wait for ms milliseconds before continuing 

  delayMicroseconds(us) 
  wait for us microseconds before continuing 

  unsigned long millis( ) 
  return number of milliseconds since program started 

  unsigned long micros( ) 
  return number of microseconds since program started 
  resolution of 4 microseconds 



AVR Architecture 
  Interface to pins 
  Each pin directly 

programmable 
  Program direction 
  Program value 
  Program pull-ups 

  Some pins are special 
  Analog vs. Digital 
  Clocks 
  Reset 



I/O Ports 
  3 8-bit Ports (B, C, D) 
  Each port controlled by 3 8-bit registers 

  Each bit controls one I/O pin 
  DDRx – Direction register 

  Defines whether a pin is an input (0) or and output (1) 

  PINx – Pin input value 
  Reading this “register” returns value of pin 

  PORTx – Pin output value 
  Writing this register sets value of pin 



Pin Circuitry 



Pin Input 

off 

DDRx = 0 

PORTx 

PINx 



Synchronization Timing 
  Note: Takes a clock cycle for data output to be reflected 

on the input 



Pin Output 

on 

DDRx = 1 

PORTx 

PINx 



Pin Input – PORT controls pullup 

off 

DDRx = 0 

PORTx 

PINx 



I/O Ports 
  Pullups 

  If a pin is an input (DDRxi = 0): 
  PORTxi = 0 – pin is floating 
  PORTxi = 1 – connects a pullup to the pin 

  Keeps pin from floating if noone driving 
  Allows wired-OR bus 

  Individual bits can be set cleared using bit-ops 
  A bit can be toggled by writing 1 to PINxi 

  SBI instruction e.g. 



I/O Protection 
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Arduino Digital and Analog I/O Pins 
  Digital pins: 

  Pins 0 – 7:  PORT D [0:7] 
  Pins 8 – 13: PORT B [0:5] 
  Pins 14 – 19: PORT C [0:5] (Arduino analog pins 0 – 5) 
  digital pins 0 and 1 are RX and TX for serial communication 
  digital pin 13 connected to the base board LED 

  Digital Pin I/O Functions 
  pinMode(pin, mode) 

  Sets pin to INPUT or OUTPUT mode 
  Writes 1 bit in the DDRx register 

  digitalWrite(pin, value) 
  Sets pin value to LOW or HIGH (0 or 1) 
  Writes 1 bit in the PORTx register 

  int value = digitalRead(pin) 
  Reads back pin value (0 or 1) 
  Read 1 bit in the PINx register 



Arduino Analog I/O 
  Analog input pins: 0 – 5 
  Analog output pins: 3, 5, 6, 9, 10, 11 (digital pins) 
  Analog input functions 

  int val = analogRead(pin) 
  Converts 0 – 5v. voltage to a 10-bit number (0 – 1023) 
  Don’t use pinMode 
  analogReference(type) 

  Used to change how voltage is converted (advanced) 

  Analog output 
  analogWrite(pin, value) 

  value is 0 – 255 
  Generates a PWM output on digital pin (3, 5, 6, 9, 10, 11) 
  @490Hz frequency 



AVR Architecture 
  Analog inputs 
  Convert voltage to a  

10-bit digital value 
  Can provide reference 

voltages 



PWM – Pulse Width Modulation 
  Use one wire to represent a multi-bit value 

  A clock with a variable duty cycle 
  Duty cycle used to represent value 
  We can turn it into a analog voltage using an integrating filter 



Port Special Functions 
  Lots of special uses for pins 

  Clock connections 
  Timer connections 

  e.g. comparator output for PWM 

  Interrupts 
  Analog references 
  Serial bus I/Os 

  USART 
  PCI 



Reading and Writing Pins Directly 
  Only one pin can be changed using the Arduino I/O 

functions 
  Setting multiple pins takes time and instructions 

  To change multiple pins simultaneously, directly read/write 
the pin registers 
  DDR{A/B/C} 
  PORT{A/B/C} 
  PIN{A/B/C} 

  e.g. to set all digital pins 0 – 7 to a value: 
  PORTD = B01100101; 



AVR Architecture 
  Special I/O support 

  Serial protocols 

  Uses special pins 
  Uses timers 
  Beyond scope of this 

course 



Arduino C Programs 
  Arduino calls these “sketches” 

  Basically C with libraries 

  Program structure 
  Header: declarations, includes, etc. 
  setup() 
  loop() 

  Setup is like Verilog initial 
  executes once when program starts 

  loop() is like Verilog always 
  continuously re-executed when the end is reached 



Blink Program 

int ledPin =  13;    // LED connected to digital pin 13 

// The setup() method runs once, when the sketch starts 

void setup()   {                 
  // initialize the digital pin as an output: 
  pinMode(ledPin, OUTPUT);      
} 

// the loop() method runs over and over again, 
// as long as the Arduino has power 

void loop()                      
{ 
  digitalWrite(ledPin, HIGH);   // set the LED on 
  delay(1000);                  // wait for a second 
  digitalWrite(ledPin, LOW);    // set the LED off 
  delay(1000);                  // wait for a second 
} 



The Arduino C++ Main Program 

int main(void) 
{ 

 init(); 

 setup();  

 for (;;) 
  loop(); 

 return 0; 
} 



Arduino Serial I/O 
  Communication with PC via USB serial line 

  Use the Serial Monitor in the IDE 
  Or set up a C or Java (or you-name-it) interface 

  Example Serial library calls 
  Serial.begin(baud-rate) 

  9600 default 

  Serial.println(string) 
  int foo = Serial.read() 

  Read one byte (input data is buffered) 

  See documentation for more 



Example Program 


